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Wide-Band Strip-Line Magic-T*

E. M. T. JONESt

Summary—This paper presents theoretical performance calcula-
tions of a novel form of wide-band strip-line Magic-T that uses two
dual strip-line band-pass filters. When all four ports are terminated
in the same impedance, the VSWR at each port is less than 1.47 over
a 2:1 frequency band, while the isolation between opposite ports is
greater than 20 db over this frequency band.

INTRODUCTION

HE fundamental characteristics of distributed-
Tcircuit hybrids, which function as Magic-T’s, were

described by Tyrell' in 1947, Since that time, a
number of workers have described the performance of
practical wide-band realizations constructed in coaxial
line*= and strip line.” The best reported performance
of these Magic-T's was obtained by Alford and Watts,?
who quote for their coaxial-line model, operating from
100 to 200 mc, isolations of greater than 45 db and
VSWR’s of less than 1.4 at any port.

This paper contains a theoretical analysis of a new
type of wide-band strip-line Magic-T. A schematic dia-
gram of this device is shown in Fig. 1. It is seen that
ports 4 and 3 and ports 4 and 2 are connected by means
of transmission lines of characteristic impedance Z and
electrical length 4. Port 1 is connected to port 2 by
means of a band-pass filter® having image impedance
Z,7 and image phase shift 3, while port 1 is connected
to port 3 by a band-pass filter which is the dual of that
connecting ports 1 and 2. It has image impedance Z; and
an image phase shift 3+180 degrees. The definitions®
of these quantities are

2740740 Sin B

Zy= s or, the
[(Zoo— Z00)2 = (Zoet Zoo)? cos? §]1/2

image impedance of the filter with the pair of
shorted strips.

* Manuscript received by the PGMTT, September 2, 1959. The
work described in this paper was sponsored by the USASRDL under
Contract DA 36-039 SC-74862.
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” The subscript s applies to the filter with the pair of short-cir-
cuited strips, while the subscript o applies to the filter with the pair
of open-circuited strips.

Z,.= Characteristic impedance of one coupled
strip, measured with respect to ground,
with equal currents flowing in the same
direction.

Z,=Characteristic impedance of one coupled
strip, measured with respect to ground, with
equal currents flowing in opposite directions.

Zo="Zoeloo/Zs, Or, the image impedance of the
filter with the pair of open-circuited strips.

0 = Electrical length of each band-pass filter and
each line of characteristic impedance Z.

B: Cos_l [ (Zoe+Zoo)

cos f | image phase shift of
(Zoe—Zoo) :( e P

the filter with the pair of open-circuited
strips.

B8-+180° =Image phase shift of the filter with the pair
of short-circuited strips.

1

Fig. 1—Schematic diagram of a wide-band strip-line magic-T.

At midband, where 6=90°, it is seen that 8 is always
equal to 90° for arbitrary values of Z,, and Z,. If one
chooses Z,, and Z,, as

Zoo = Z(v/2+ 1)

Zoo = Z('\/E - 1) (1)

then, Z,=Z,=7 at midband. If, in addition, the values
of the four terminating impedances satisfy the relation

221 = Zg = Z (2)

then the Magic-T is perfectly matched at midband at
all ports and, hence, has perfect midband isolation be-
tween ports 1 and 4, and ports 2 and 3. Inspection of
Fig. 1 shows that ports 2 and 3 are equivalent to the
through arms of a waveguide Magic-T while ports 1 and
4 are equivalent to the ports on the series and shunt
arms, respectively, of a waveguide Magic-T. At [re-
quencies other than the midband frequency, the various
ports will not be perfectly matched and the isolation
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between opposite ports will not be infinite. Nevertheless,
as will be shown later, the calculated performance of this
Magic-T is quite good over a 2:1 frequency band. Cal-
culations are also presented for cases when the various
impedances are different from those defined by (1) and
(2). It is shown that optimum performance over the 2:1
frequency band is obtained when Z.,/Z=2,/Z=0.8024
and Z,/Z =1.0785 at midband.

The performance of these Magic-T’s as a function of
frequency is analyzed here in terms of the well-known
ABCD matrices of the individual networks within a
particular Magic-T. These matrices are listed in Table I
for reference.

TABLE [
ABCD MATRICES OF THE INDIVIDUAL NETWORKS IN THE NMacic-T
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The techniques used to compute the input impedance
of any port and the output voltages at the other ports
will now be illustrated for the case when port 1 is ener-
gized. Fig. 2 shows the Magic-T of Fig. 1 redrawn in a
convenient form for computation of the input imped-
ance of port 1 and the isolation between ports 1 and 4.

Ay | By I
Cy | Dy \\4u
@
F
zZ, V,
o / gn
CL | bL =

Fig. 2—Magic-T equivalent circuit used in computing
voltages at ports 1 and 4.

— 24 ByCr + BiCu -+ Dydyr -+ DrAv +

Network 1 Matrix Here the matrix elements of the upper network are
—J — given by
Ay | By
Z | —— | = 1] ! AN AR ARG
) Z 1 CU DU
_ <‘ while those in the lower network are given by
4 B
Z T s 312 Skl tl = |M4l X !Mgl X Zwsl N C)
—— 1 Cr Dy,
_ The voltages and currents at the two ports are related
by
s —| _cos0 | jZsing | _
’—I‘E:}" sin 9 ! = {anl Vi= AuVs+ Bylw
Vs cos 6
7 VA .
Iw = CyVy -+ Dylw (3
I ! T and
i cos B | +jZ,sinB
— T = Vi= AuVi+ Bulu
e i, | e
Zs ’ Iy = CoVa+ Dilur. (6)
T a o The currents Iy and I,z are related as
_—_~_§4— 8+ 180° al s s
~—CO0s — ] SIN
L — A e (i + T2 = Ve 0
—7 > —cos 8 '
g W— ‘ When (7) is substituted into (6) and (5), one finds that
. = theinput impedance Zin at port 1 is
ByBy
. AyBr + ByAr +
1 1
Zinqy = = . (8
Ly + I ByDy + DyBy

Zy
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The input impedance at port 4 when port 1 is terminated
in Z; is easily determined by replacing, in (8), Ay by
DU, .DU byAU, AL byDL, and DL byAL‘

It is easy to show that the ratio of V1/V, when port 1
is energized is given as

ByB;,
Vi VA
Vs

+ AuBr + ALBu

9
By, + By ©)

The ratio V,/V; when port 4 is energized is determined
by replacing, in (9), 4y by Dy and 4 by Dz, which
shows that in general these ratios are slightly different.
The actual insertion loss, I.L., between ports 1 and 4,
is independent of the direction of propagation through
the network and is given by

B ByB; 2
+ dyB. -+ ArBy
1 Z
IL =
L] 1+ Taaen | By + By
(10)
or
[ BUBL T2
+ DyBr+ DBy
1 Z1
IL = ,
L1+ Tingw | B+ By _
where
Zw() — Z1
11in(1) =
Zin(]-) _I" Zl
Zin(d) — 71
in(4) — — ¢
Zu(d) + Z4

Eq. (10) predicts that the insertion loss between ports
1 and 4 is infinite only when Z,=Z2Z,=Z.

The voltage at port 3 when port 1 is energized is de-
termined with the aid of the circuit in Fig. 3. The
matrices in this circuit have the values

A" B
& >

= | Mi X | M| X | M| X | M| X | M| (11)

and
‘ 4s Bs | _
Cs Ds |
The voltage ratio Vs/ V1 is
Vs B’ + B;s

g : (12)
Vi BB
+ A'Bs+ AB

2
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The voltage at port 2 when port 1 is energized is deter-
mined with the aid of Fig. 4. The matrices in this circuit
have the values

A/l B//
1 CII D//
= | Ms| X | Ma| X | Ms| X | Mi| X | Mo, (13)
and
A B
! & 4 _ ' M4l i
C4 .D4
The voltage ratio V,/ Vi is
14 B+ B
. : (14)
V. BBy
+ A”By+ AB”
A5 |Bs
Cs | D5
Z @ ®
v v‘ Y4 V.
£ T §7 u
¢’ [o’ -

Fig. 3—Magic-T equivalent circuit used in computing
voltages at ports 1 and 3.

A" B"
c” Dui
Agq | Bg bl iz
Ca | Da -

Fig. 4—Magic-T equivalent circuit used in computing
voltages at ports 1 and 2.

The input impedance of the other ports and the volt-
age transfer coefficients between the various ports when
a particular port is energized may be written by inspec-
tion using the above technique. One interesting result
of such a procedure is the fact that the insertion loss
between ports 2 and 3 is infinite only when Z,Z,=Z* and
#=p8=90°. This condition is satisfied at midband for all
the Magic-T’s discussed here.

The electrical performances of five Magic-T’s have
been computed on a high-speed digital computer using
the above formulas. The important electrical parameters
of these structures are listed in Table II. The input im-
pedance at the four ports of these Magic-T’s are plotted
in Figs. 5 through 9. It is observed that in all cases the
real part of the input impedance of a port is a sym-
metrical function of frequency while the imaginary part
is an antisymmetrical function of frequency. Further-
more, the input impedance at each of the various ports
of any one Magic-T has a different variation with fre-



1960

Jones: Wide-Band Sirip-Line Magic-T

TABLE 11
ELEcTRICAL PARAMETERS OF Various Strip-LINg Macic-T's
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Magic-T Magic-T Magic-T Magic-T Magic-T

Number 1 Number 2 Number 3 Number 4 Number 5
Zoe/Z 2.414 2.550 2.550 2.550 2.550
Zoo/Z 0.414 0.392 0.392 0.392 0.392
VAYVA 0.500 0.500 0.6350 0.7407 0.8024
YAV 1.000 1.000 1.000 0.8696 0.802%
Z,/Z (Midband) 1 1.0785 1.0785 1.0785 1.0785
Z,/Z (Midband) 1 0.9272 0.9272 0.9272 0.9272
8 (when Z,/Z=2,/Z) 90° 90°4-30.7° 90°4-30.7° 90° +30.7° 90°4-30.7°
8 (when Z./Z=2,/7) 90° 90° +-22° 90° +22° 90° +22° 90° +22°
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Fig. 5—Input impedance of Magic-T 1.
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quency since this device has no electrical plane of sym-
metry.

Magic-T 1 is designed to be matched at all ports at
midband. It also has infinite isolation between ports 1
and 4 and ports 2 and 3 at midband. The input match at
the various ports deteriorates at frequencies above and
below midband. At the edges of a 2:1 frequency band
the VSWR at port 4 rises to 2.55.

Magic-T 2 was designed to have perfect isolation be-
tween ports 1 and 4 at #=90° £+ 22° and approximately
equal isolation between these ports at the center and at
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the edges of a 2:1 frequency band. As mentioned before,
it also has perfect isolation between ports 2 and 3 at
#=90°, The frequency variation of the isolation be-
tween these pairs of ports is shown in Fig. 10. It is ob-
served that over a 2:1 frequency band the isolation
between ports 1 and 4 is always greater than 24.8 db,
while the isolation between ports 2 and 3 drops to 22.2
db at the edges of such a band. The input impedance of
the various ports is quite similar to that of Magic-T 1,
and at the edges of a 2:1 frequency band the VSWR at
port 4 rises to 2.45.
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Fig. 6—Input impedance of Magic-T 2.
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The internal structure of Magic-T 3 is the same as
that of Magic-T 2; however, the terminating impedance
Zy at ports 1 and 4 has been changed to improve the
match at these ports. The input impedance of this
Magic-T is shown in Fig. 7. The VSWR at the various
ports of this filter is less at the edges of a 2:1 band than
in Magic-T 2. The highest VSWR at the edge of the
band is 1.93 measured at port 4.

The internal structure of Magic-T 4 is the same as
that of Magic-T’s 2 and 3. The impedances Z; and Z
have been chosen to give a perfect match at port 1 when

ot
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0 =90°+22°, The input impedance plot of this Magic-T
in Fig. 8 shows that this technique considerably im-
proves the match at all ports. The maximum VSWR of
1.58 at the edges of a 2:1 band occurs at port 4.
Magic-T 5 is the same as Magic-T 4, except that it has
equal impedances at all the ports whose value is the
geometric mean of the values of Z; and Z; in Magic-T 4.
The input impedance of this Magic-T is shown in Fig. 9.
Its frequency variation of input impedance is less than
that of any of the other Magic-T’s. Furthermore, the
total impedance excursion at each port as a function of

O4g
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Fig. 7—Input impedance of Magic-T 3.
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frequency is quite similar over a 2:1 frequency band.
Hence, it is believed that the parameters of Magic-T 5
are essentially optimum for a 2:1 frequency band of
operation. The isolation between diagonally opposite
ports is plotted in Fig. 10. It is seen that the isolation is
quite similar to that of Magic-T 2.

In many applications the most pertinent parameters
of a Magic-T are the input impedance of the various
ports and the isolation between opposite ports (z.e., be-
tween ports 1 and 4 and ports 2 and 3). However, it is
sometimes desirable to know approximately the ratio,
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R, of wanted to unwanted voltages at ports 2 and 3
when port 1 or 4 is energized, or the ratio of wanted to
unwanted voltages at ports 1 and 4 when port 2 or 3 is
energized. This ratio R is V3/Vy when port 1 or 3 is
energized and Vy/V, when port 4 or 2 is energized.
Here Vs is the balanced voltage and Vy the unbalanced
voltage.® An approximation to R can be obtained by the

8 When port 1 or port 4 is energized, Vi=|V;—V2|/2 and
Vu=|Vs+ V»|/2. When port 2 or port 31s energized Vy=| Vi— V4| /2
and Vy=|Vi+ Vil /2.

Fig. 8—Input impedance of Magic-T 4,
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simple procedure outlined below. Inspection of Fig. 1 and it is assumed that 0~B=m/2 and Z;~=Zy=Z over

shows that when port 1 is energized the operating band. Recalling that the insertion loss
. . R G !
Ve Ve Ve Ve (I.L.) is approximately V?/ Vit is seen that
——t —t — (15)
Zy Z; Zy VA V.2 Vyiz? 1 Vy2Z?
or — = [ L = + + 1= — (17)
Va VALY AVAI Y AVAS 2V Z1Z,
Ve 2V 2V 47,
— = Vo? - (16)
Zy Zs Zz VA and
In deriving (16), use has been made of the fact that (22122> (19)
R*= 1T
Vet 4 Vit = 2V + 2V 7
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Fig. 9—Input impedance of Magic-T 5.
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Fig. 10—TIsolation between ports 1 and 4 and between ports 2 and 3 for Magic-T's 2 and 5.

It is easy to show that (18) also applies to ports 2 and
3 when port 4 is energized, and to ports 1 and 4 when
either port 2 or port 3 is energized.

Application of (18) to Magic-T 2 shows that the in-
sertion loss between opposite ports is numerically equal
to R? at the other two ports. In Fig. 10 is plotted the cor-
rect value of R?, calculated from (12) and (14) at ports
2 and 3 when port 1 is energized. It is seen to agree very

closely with the approximate value of R? computed by
(18). In Magic-T 5, (18) predicts that R? is about 1 db
greater than the insertion loss between opposite ports.
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